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TIlE MEAN DURATION TIME OF CARRIER-BORNE EPID~ (IC8

H
Susan L. Conlon and L • Billard
The Florida State University

ABSTRACT

In this- paper , the two—population model for a carrier—borne epidemic posed

by Bailey CThe Mathematical Theory of Infectiou s Diseases and its Applications ,

1975, p. 211) is for~~i1ated in a mathematically tractable manner . This model

reflects the epidemiology of diseases such as malaria , where the progress of the

disease depends on the interaction of a population of mosquitoes and a population

of h~~ens • An expression for th. mean duration time of the epidemic is obtained

and a couputationally feasible algorith m is presented . Result , of a study investi-

gating the consequences on the mean duration time of varying the infection and

r~~~va1 rates in the two populations are given .

ICETI~ RDS: carrier—born , epidemic, malaria, mean duration time
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1. IW~~~CUCTION

In the theory of epidemic processe. developed thus far , it has generally been

assumed, in the simplest case , that th. population of interest is closed and y

be divided into sub-populations whose aswhers nay be classified as susceptible or

inf ective. A slightly more complicated model introduce, a third sub-population

of removals.

These simple models and the associated theory are inadequate in the study of

several diseases (malaria, for ew~~J.e) in which the spread of the disease by

carriers is a recognized phenomenon. A carrier is an individual who nay transmit

the disease to other individuals, but who has no overt disease symptoms himself

In the first significant work in this area , Weiss (1965) consider . a closed

population of a susceptible s, into which n carriers are initiall y introduced

There is no subsequent introduction of carriers , nor do any suscept ibles become

carriers during the course of the epidemic . The carrier. are detectable only by

the discovery of infected person s, and the epidemic pro gresses until either all

susc.ptibles become infected or all carriers are removed .

Several extension. to the Weiss model have been considered . Downton (1968)

allows I or the further creation of carriers from the susceptibles during the

course of the epidemic. Diets and Downton (1968) relax the assumption of a closed

population and allow for immigration of susceptib les and /or carriers . Pettigrew

and Weiss (1967) consider an epidemic involving two types of infectives (e.g.,

clinically infected and sub-clinically infected individuals ) in an infinite popu-

lation of susceptible , . App lying results from branching proc esses, they obtain

equations for the mean number of clinically infected individuals and for the mean

numbe r of sub—clinically infected individuals (carriers ) at any tias t.
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Ost concern , however, is not with the one-population model of these

authors , but rather with the two-population model as discussed by Bailey

(1975, p. 211). This permit. consideration of such carrier—borne epidemics

as Iaria , in which the carriers (mosquitoes) for, a population distinct

fro. the host population (humans).

In Section 2 of this paper, we present a stochastic model for the two—

population carrier—borne epidemic. A th oretical expression for the mean

duration time is derived in Section 3 and a computationally feasible algorithm,

based on a recursion relation, is presented in Section 4. In the final section,

we present s~~~ numerical results for selected parameter values.
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2. THE CARRIER-BORNE EPIDRNIC MODEL

Let S
3

(t), I
1
(t), and R

1
(t) denote the number of susceptibles, infectivee,

and r~~ vals, respectively, in population j at t ime t. Population J is of fixed

size

N
1 

— S
1
(t) + 1

1
(t) + R

1
(t),

— 1,2, for all t. The subscript j — 1 will refer to the host population and

— 2 will refer to the carrier population. Let ~~(t) — (S
1(t),11(t); S2

(t), 12(t))

have realization ~(t) — z — (s1,i1; s2,i2). Then ~ take. values in the state

space

A — (~~ 
— (s1,i1; s2,12): 0 � e1,i~ � N

1
; 0 � s~ + i~ � N1, 1—1,2).

Note that , since R
1
(t) — N

1
(t) — S

1
(t ) — 1

1
(t), we need not include the n~~~er

of removed individuals in the definition of ~(t).

In a simplificat ion of the epidemiology of mala ria , a human susceptible

acquires infection through being bitten by an infective female mosquito . The

parasites released by the mosquito multiply in the liver of the human host, and

then settle in the red blood cells. Female mosquitoes, seeking the blood re-

quired for the development of their eggs, are then infected by biting an infected

human host . Thus, the probability that an add itional human susceptible becomes

infected during a short time interval is proportiona l to the number of human

susceptible., the n~~~er of infected carriers, and the length of the tine interval .

Similarly, the probability an additional carrier becomes infected during a short t ime

interval is proportional to the number of susceptible carriers , the nunber of infected

ht sns, and the length of the time interval • The removal rates are assumed linear .
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Thus, the probabilities of permissible transitions in the interval (t,t+dt) are:

Ci) P((s
1
,11

;s2,i2) (s
1
—l,i1+l;s2,i2)) — Ø

1s1i2dt ÷ o(dt),

(ii) P{(s1,i1;s2,i2) + (s
1
,i1—l;s2,j2)} — y1i1dt + o(dt) ,

(iii) P{(s1
,11,s2,i2) + (s1,i1,s2—1,i2+1)} — 52s2i1dt + o(dt) ,

(iv) P{(s1,i1;s2,i2) + (s
1
,i1;s2,i2—l)} — y2i2dt + o (dt) ,

and

(v) P{(s1,i1;a2,i2) 4 (s1,i1;s2, i2)) — l_ (0
1e1

12 + ?lil ÷ B2s211 + 1212)dt

+ o(dt),

where and y1, the infection and removal rates, respectively, are assumed

constant.

3. MEAN DURATION TIME

Our epidemic process is said to be terminated whenever no more human sus-

ceptible, can acquire infection. This occurs when one or more of the following

subsets of A is entered, viz.,

the number of human susceptibles is zero,

12: the number of infectives in each population is zero,

and
13. there are no susceptible or infective carriers (i.e., all carriers

have been removed ) .

Then, let

B — u 12 u E3~

where , from the definitions above ,

11 — ~~O,il;I2IiZ)},
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~~s1,

0;s2, 0)},

and

13 — 

~~~~~~~ 
0, 0)).

Let the complement of the set B be

C - A-B .

Now, we are interested in Tm~ the mean time required for an epidemic which is

currently in state m t G to enter a state in the set B.

To derive expressions for the mean duration time, we consider our process

as a continuous time Markov chain with a one—dimensional state space • In order

to identify each vector in A by a natural number, we apply the transformation

k k(s1,i1;s2,i2)

— E(N
1+

_ 
+){si(N+1)N/2 + N2+(N2++1)/2}

+ 
(
~~1)

2
+ (Ni++1)Ni+(N+l) /2 + (N+l)a

1 + (s2+1),

where

N—max (Ni+,N2+) and c (x) — I (x � 0).

The transformed state space is

— (h: 1 � h � (N1
+
2)[N2+2) h integer).

For example, the first nine states in A,~, regardless of the population sizes,

are:

________  

k(s)

(O, 0;O,O) 1
(0,0;0,l) 2
(O,O;l,0) 3
(0,l;O,O) 4
(O,1;O,1) 5
(O,l;l ,O) 6
(l,O;0,0) 7
(1,0;0,1) 8
(l ,O;1,0) 9

_____ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~
.- __ _.

~~~~~
_
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We note tha t there is a unique one-to—one correspondence between the

vectors in A and the integers in Ar • An algorithm to determine the vector

in A which corresponds to a given h ~ AT 
is presented in Conlon (1977).

In this transformed state space, we define the transition probabilities

to be:

~mn~
t) — P(h(t) — n lh ( o)  — in]

— PEh(t + s) — tlIh(s) = in)

— v  t + o ( t ) ,inn

— 1 — 

~~~ 
+ 0(t),

where

v

usm

and h(t) denotes the state the epidemic i~ in at t ime t. The hazard rates

for the epidemic process are

$1s1i2, n’.k1”k(s1—1, 11+1; ~2’ 
i2)

— 
y1i1, n—k2—k(s1, i1—l; ~2’ ~~
~2~2~l’ 

n—k3—k(s1, i1; s2—1, i2+l)
y2i2, n”k4—k(s1 ~1’ ~2’ 

i2~
1)

Thus ,

— 81s~i~ + y1i1 + 02s2i1 + T212.

A Markov chain ie •aid to be uniformizable if sup V — V < . Since
in 0

our chain is finite , uniforin izabi lity follows imsediately . Keilson (1974)

• showed that the original proces s (our uniforaizable chain) and a discrete—time

process constructed by randomly selecting the ntm~ er of transitions according

to a Poisson process with parameter v have state probabilities identical

in law.

_  _  ~~~ •~~~~~-~~~~~~~~~~~ - 
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For some v � v  , let

fv,0iv, n * n

and
— (a,~).

Then, following Keilson (1974) , we can derive the consistency relation

.E CT,) 
~
(zc—A~,c

)
~~ ~G’ (3.1)

where A is the matrix A restricted to the good states.V

To illustrate the theory, let us consider the first nine states of an epi-

demic, as presented above. If we choose 8
~
.O.l, 02 0.2, y1 O.2, and y2 0.2 ,

then the v~ are given by

a 1 2 3 4 5 6 7 8 9

0 0.2 0 0.2 0.4 0.4 0 0.3 0

Thus, v0 — aax V — 0.4. Let v — 1. Then the matrix A~,_1 is

1 0 0 0 0 0 0 0 0
.2 .8 0 0 0 0 0 0 0

• 0 0 1 0 0 0 0 0 0
.2 0 0 . 8 0 0 0 0 0

A1 • 0 .2 0 .2 .6 0 0 0 0

0 0 .2 0 .2 .6 0 0 0

0 0 0 0 0 0 1 0 0
0 0 0 0 .1 0 .2 .7 0
0 0 0 0 0 0 0 0 1

We observe that C consists of the state corresponding to tr4 only. Thus, Ai ,~
u1O.7,

a scalar, and the consistency equation (3 .1) gives the mean duratio n tIme of

epidemic which is currently in state (l ,0;O,1):

- -— ~• — -
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— (l_0.7) 1.l — 3.~~.

We note that the choice of v � v is arbitrary . If , for example, we choose

V — 2, we have

• T8 — ~(l_ .85) *l — 3.3.

In ge~iera1, when more good states are considered, the dimension of A
~~0

is quite large, and the inversion of — A
~,0
] is cumbersome. For example ,

in the situation where Ni+ — N2~ — 8, there are 2025 states in the transformed

state space AT, with 505 states in B and 1520 states in G. A computationally

feasible algorithm is required.

4. A RECURS ION APPROACH

In the previous section, we presented the consistency equation for

together with the relevant theoretical justifications. We also noted potential

difficulties in actually computing values for T~ when the population sizes are

not small . We coninent here on a computationally feasible (and easily program-

mable) approach to the calculation of T .

We observe that the mean duration time of our epidemic process at any

given state can be decomposed into the gum of the following components: the

average time spent in the given state, and the weighted mean duration times

of the epidemic in those states to which the epidemic may proceed in one step

from the given state. The weights are the hazards of each permissible one—

step transition from the given state. Thus, if we let T(s1,i1;s2,i2) denote

Ii. ________  - - —~~~--- --



the mean duration time of an epidemic which is currently in state

we may write the following recursion relation:

T(s1,i1;s2,i2)

— vt81,11;s2,i2) E + B1s1i2 T(s
1—1,i1+l;s2,i2)

+ y1i1 T(s
1,i1—1;s2,i2)

+ 825211 T(s
1,i1

;a
2—l,i2+1)

+ Y212 T(si~ii;s2~i2
_l
~
J
~

• where v(s1 i1;s2,i 2) — 81s1i2 + y111 + $2s2i1 + y2i2.

A computer program, based on this recursion relation, has been written to

calculate the mean duration time at any state in the epidemic process . It uses

the counting system described in Section 3 and has the desirable feature that

the calculation of the mean duration t ime of an epidemic in state h requires the

computation of mean duration times for only those states j ,  where j < h. (A

Fortran listing of the program is available from the first author on request.)

• 5. SOME NUMERICAL RESULTS

In this section we present the results of an investigation of the

relation between the mean duration time and the quantities it depends on, namely,

the infection and removal rates and the numbers of susceptibles and infectives

in the two popula t ions . Our investigation restr icts attention to epidemics

start ing in a state of the form (sl,l;s2,l), i.e., with one initial infective in

each population .

- --- ~~~~~~~~ -~~ ~~~~~ f-~~~ 
—---

~~
- •-
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We first note that the mean duration time for an epidemic starting in

• state 
~~~~~~~~~~ 

with parameter vector (81,B2 y1,y2) will be c times larger

than the mean duration time for an epidemic starting in the same state with

parameter vector (c81,c82;cy1,cy2), for c > 0. Hence, only one parameter

vector in the family {(c81,c82;cy1,cy2), c > O} need be examined.

For parameter vectors of the form (e,e;e,e), the mean duration time in-

creases from its initial value at — 

~2 
— 1 to a maximum at — — 3 of

1.52 times the initial value and then decreases to a value at s
~ — — 8

which is 1.05 times the initial value, as illustrated in Figure 1.

[Figure 1 about here.]

To determine why the mean duration time increases and then decreases

as = 

~2 
increases, the parameter vector (O.5,O.O;O.0,O.0) was Investi—

gated and the results are presented in Figure 2.

[Figure 2 about here.]
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Figure 1. Mean duration time for epidemics starting in state (si, ~ •2’ 1) with

parameter vector (0.5 , 0.5; 0.5 , 0.5) .

2.80 —

2.40

0.00 2.00 4.00 6.00 8.00 10.00
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Figure 2. Mean duration time for epidemics starting in state (s~~ ~ s~ , 1) with

parameter vector (0.5 , 0.0; 0.0 , 0.0) .
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For this parameter configuration, the epidemic can end only if s1 
— 0,

since any existing infectives are not removed. The consequence of this is

that the mean duration time will increase as s
~ 

— increases since the

state (k,l;k,l) decays into (k—l ,2;k,1), which has the same mean duration

time as (k—i l;k—l,l) for these parameters.

Examination of Figure 3, which presents the mean duration time for an

epidemic with parameter vector (0.5,0.5;O.0,0.0), indicates that allowing

susceptible carr iers to become infected (82 > 0) results in a decrease in

the mean duration time, for sufficiently large 
~1 

— 

~2’ rather than the con-

tinued increase as in Figure 2.

(Figure 3 about here.]

With this parameter configuration , the epidemic may terminate only if

— 0. The decrease in mean duration time is due to the fact that the rate of

transitions of type (1) is 81s1i2 . Since 82 
) 0, i2 increases and the transition

rate tends to be larger than it is in the situation in Figure 2 , where 12 remains

constant. Allowing nonzero removal rates does not affect the general shape of

the mean duration time curve, as can be seen by comparing Figures 1 and 3.

Thus, the increase and subsequent decrease in the mean duration time oh—

served in Figure 1 can be explained as follows. An epidemic starting in state

(1,l;1,l) with parameter vector (e,O;e ,e) is most likely to terminate because ‘1

becomes zero . As another host and carrier are added , the time required for s1

to decrease to zero increases and the epidemic lasts longer . However, the

• addition of the fourth individuals causes an increase in the hazard rates, 



Figure 3. Mean duration time for epidemics starting in state ~ ~~~~
‘ 1) with

parameter vector (0.5, 0.5; 0.0 , 0. 0).
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which more than offsets the additional time required to remove the fourth

susceptible host. Thus , the mean duration time of an epidemic in state

(4,l;4,l) is less than that of an epidemic in state (3,l;3,l).

V

_________________
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